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Changes in early statistics and data science education have a ripple effect across the curriculum: as the 

introductory courses are modernized, the later courses must too. The class described in this paper is a 

second-semester statistical modeling course with a modern, post-data science flair. Regression models 

are introduced separately (multiple regression, Poisson regression, logistic regression) before being 

synergized as the generalized linear model (GLM). In this class, learners studied the patterns and 

behaviors of these models through targeted labs leaning heavily on simulated data. This course 

emphasizes the development of statistical intuition through hands-on learning experiences, rather than 

a set of rules for each situation. The addition of introductory data science, coupled with an increased 

emphasis on statistical computing in the first statistics course, make realistic simulation studies possible 

earlier in the curriculum. 

 

INTRODUCTION 

Modern introductory data science courses provide students with a computational foundation 

beyond traditional introductory courses. Even in the first statistics course, many students are now 

using R to support their coursework rather than applet or “point-and-click” software systems. As the 

introductory courses change and grow -- what comes next? The class described in this paper is a 

second-semester statistical modeling course with a modern, post-data science flair. Regression models 

are introduced separately (multiple regression, Poisson regression, logistic regression) before being 

generalized as the generalized linear model (GLM). Students study the patterns and behaviors of these 

models and develop statistical intuition about model performance through simulation studies. These 

labs are greatly enhanced through the strong foundation in statistical programming, reproducible 

research, and data visualization provided by an introductory data science course.  

 

LITERATURE REVIEW 

In the past decade, student interest and enrollments in statistics and data science programs has 

skyrocketed. As a result, statistics educators have found themselves teaching more advanced statistical 

content sooner. For example, generalized linear mixed models, or GLMMs, were once considered a 

graduate-level topic. However, their wide flexibility and applicability make them an ideal topic from 

which to build a second undergraduate statistics course. 

Effective use of GLMMs requires a high level of statistical intuition. The theoretical and 

practical aspects of these models, such as scope of inference, understanding the link scale v. data scale, 

design considerations, and incorporation of random effects mean that many of the “rules of thumb” 

students learn in introductory statistics go out the window. So how can statistics instructors help learners 

develop the intuition needed? As with any new subject, real (or realistic) and authentic experiences are 

key. Simulation studies and hands-on model testing can provide these experiences, and mimic modern 

statistical research workflows. 

Even though there is now a general consensus in statistics education community on what 

belongs in the introductory statistics course (Garfield et al., 2002) and the guiding principles for 

instruction (Carver et al., 2016), there is more variation in what comes next. Generally, a “second 

semester” statistics course includes topics such as multiple regression, analysis of variance, and design 

of experiments (Blades et al., 2015; McGaughey et al., 2018), but the level of coverage and rigor can 

vary. As the introductory statistics course changes, and the introductory data science course grows, 

students will be coming to later courses with stronger backgrounds. 

Recently, a group of faculty members at Loyola Marymount University developed a set of 

learning objectives for developing undergraduate data acumen, called the Undergraduate Data Pathways 

(Bargagliotti et al. 2020). The thirteen final learning objectives covered elements of the entire 
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undergraduate curriculum, not just a single course. These and other sets of learning outcomes such as 

the Park City Math Institute (DeVeaux et al., 2017) can provide a “road map” for what comes after the 

first statistics course in the age of data science. Loy, Kuiper, and Chihara shared a set of hands-on lab 

activities that could be used to bolster data science concepts such as visualization, data wrangling, and 

databases in a traditional statistics course or curriculum (Loy et al., 2019). These data science concepts 

are integral to simulation studies in statistical research, and student familiarity with them sooner means 

that meaningful simulations can be introduced at the undergraduate level. 

Simulation studies can be effective tools at the post-secondary level to develop statistical 

competencies and explore nuances of new and complex models. Several comparisons of simulation-

based introductory courses against traditional courses found that teaching via simulation was associated 

with improved learning outcomes related to statistical inference (Maurer and Lock, 2016; Hildreth et 

al., 2018). However, most of the simulation-based curriculums focus on applets or web-based 

approaches, and not simulation studies as we would think of them in statistical research. With increased 

programming and data knowledge, upper-level courses in statistics are well-suited to take that next step 

toward learning through simulation. 

Learning through simulation can be an effective teaching tool at the undergraduate level. 

Students often ask when examining residual plots, or evaluating model assumptions, what should this 

plot look like? What values would we expect if a model is a “good fit”? With simulation studies, we 

can actively explore with our students what happens when assumptions about our model are in fact 

met, and what happens when they are not. 

MTH 362: STATISTICAL MODELING 

MTH 362: Statistical Modeling is a second semester statistics course offered as part of the Data 

Science Major and Minor at Creighton University, a private Jesuit Catholic institution in the Midwestern 

United States. Introductory Statistics is a pre-requisite for this course, and most students take an 

introductory course focused on the health sciences (due to Creighton’s large pre-medical student 

population). In previous semesters, 50-75% of the students have also completed Creighton’s 

Introduction to Data Science course. The course presents the usual conceptual challenges and must also 

bridge the gap between two sets of students: those who are planning to complete the Data Science Major 

or Minor, and those in other fields seeking to improve their statistical background. 

The learning outcomes in MTH 362 can be split into two components, described in Table 1.  To 

meet these learning outcomes, a series of simulation labs has been incorporated into the course. Each 

lab is explicitly designed around using a simulation study to understand a new concept related to model 

fitting and evaluation. Topics include selection bias, residual plots for non-normal data, model 

diagnostic behavior, and correlation structures. In Spring 2021, labs took place approximately every 

other week, and like the rest of the course, were completely online due to the pandemic.  

 

Table 1. Learning outcomes for MTH 362: Statistical Modeling 

 

Subcategory Outcome 

Statistics 1. Understand the basic components and theoretical assumptions of a (generalized) 

linear (mixed) model 

2. Consider whether theoretical assumptions of a model are (not) a good fit to reality 

3. Create a reasonable statistical model based on both characteristics of the response 

and experimental design considerations, as well as the relevant research 

objectives of a study 

Computation 1. Translate a statistical model into R code using base statistical packages and 

“lme4” (Bates et al., 2015) 

2. Generate predictions, residual plots, fitted value plots, and summaries of model 

3. Write professional, reproducible analyses using R and RMarkdown 

4. Use simulated data to understand a model’s performance when conditions 

are “met” and when they are “violated” 
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LAB TOPICS AND STRUCTURE 

Each lab was designed to take about 60 minutes of a 75-minute class period, leaving time for 

discussion. Since the course took place entirely online, labs were completed in Zoom Breakout Rooms 

with groups of 3-4. Complete summaries of each lab are in Table 2. Initially, labs focused more on the 

computation and reproducible workflow aspects of the course. This allowed students entering from 

multiple introductory statistics courses, or that had not taken introductory data science, a chance to 

“catch up”. 

Each of the labs focused on a particular aspect of interpreting residual plots and model fit 

from a (generalized) linear (mixed) model. Throughout the semester, students worked up to a unified 

approach to modeling through the generalized linear mixed model. To effectively use GLMMs, 

statisticians need to develop a strong sense of intuition, especially when diagnosing potential issues in 

a model. Changes at each level of the GLMM, such as categorical explanatory variables instead of 

numeric, or a negative binomial model instead of a Poisson, often manifest in different “correct” 

patterns in a residual plot or “best” values of a diagnostic. Rather than discuss each model separately, 

simulation enabled students to compare what should happen when a model is “correct” compared to 

what happens in reality. 

 

Sample simulation activity: residual plots in Poisson models 

 Lab 2: Model Diagnostics was the first foray into exploring model performance, and 

diagnosing whether a model was a “good fit”. In this lab, students were given examples of two 

models: a “naïve” model and a “better” model. Each group simulated their own data under one of 

several violated conditions, then reported back to the entire class. In one instance, two explanatory 

variables,  𝑋1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1) and 𝑋2 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛 = 1, 𝑝 = 0.6) were used to generate a Poisson 

distributed response with 100 observations, 𝑌~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(ln⁡(𝜆) = 1 + 2𝑋1 + 𝑋2).  
 Figure 1 shows some sample findings. Based on the fit statistics, like multiple R-squared, 

there is no obvious problem with the linear model. However, the residual plots show clear curvature 

and heteroscedasticity, and are vastly improved by switching to the Poisson model. Each group 

explored their own changes to the correct data generating model, such as adding interaction terms, 

non-significant variables, or quadratic terms, and explored how this manifested in the correct Poisson 

and incorrect linear models. This example also gives an early introduction to the idea of scale in a 

generalized linear model – specifically the difference between the data scale and link scale as shown 

by the different axes in the fitted value plots. 

 

 

 
Figure 1. Sample simulation from Lab 2: Model Diagnostics 
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Table 2. Descriptions of each lab activity and placement during a 15-week semester 

 

Lab Week Description 

Lab 1: Interaction 

Terms 

2 This lab explored the addition of categorical variables to a linear 

model using interaction terms. Students demonstrated that interaction 

terms allow the slope and intercept of a model to change from one 

group to another and can be used to compare the relationships between 

groups.  

Lab 2: Model 

Diagnostics 

3 In this exercise, students simulated data from a known population 

model, and generated residual plots to evaluate the true model’s fit. 

Once that was completed, each group was assigned a different 

misspecification, such as adding a non-linear term to the true model, 

removing an interaction term, incorporating a Poisson response, or 

adding a non-constant variance term. Each group then created residual 

plots for the misspecified model and presented their findings to the 

group using Google Slides. This lab allowed students to see concrete 

examples of assumption violations manifested through residual plots 

and was intended to begin building intuition about when a residual 

plot doesn’t “look right”. 

Lab 3: Exploring 

Poisson 

Regression 

Models 

5 This lab was similar in structure to Lab 2, with the addition of a 

Poisson-distributed response. Rather than introduce a new set of rules 

of thumb, we simulated Poisson data under a variety of parameter 

combinations and examined the resulting residual plots from the true 

model. We then used these to look for similarities and identify some 

expected patterns with Poisson data. 

Lab 4: Exploring 

Binomial Models 

9 This lab had similar structure and goals to Lab 3, however the true 

model was a binomial GLM, or logistic regression. This lab was 

completed after a review of probability distributions and an overview 

of the structure of a GLM. 

Lab 5: The 

Missing Link 

(Function) 

10 In this lab, we used two case studies to explore the behavior of 

proportional data under varying link functions. In one data set, the 

choice of link function made a meaningful difference in the 

performance of the model. For the other data set, all models were 

equally "unsuccessful. 

Lab 6: Don’t Mix 

Up Your Fixed 

and Random 

Effects 

12 In the final simulation-driven lab, students were presented with six 

experimental design scenarios. For each one, students identified the 

treatment and topographical structure of the design, the appropriate 

type of effect for each variable (fixed or random), and a suitable 

response distribution. Then, students translated that to a reasonable 

model formulation in R. During the next class period, students tested 

their proposed models on simulated data. 

 

DISCUSSION 

 Introducing simulation-based labs to target model diagnostics in a second statistics course 

enriched the learning experience. Students were able to work together, even online, to explore difficult 

concepts in a hands-on way. For example, one topic that students often struggle with is comparing 

models using selection criterion such as AIC (Akaike’s Information Criterion). Direct comparison of 

AIC across different response distributions, such as a normal response to a binomial response, is 

invalid due to theoretical differences in the structure of the likelihood function. To motivate the 

theoretical reasonings to an undergraduate audience without a background in calculus or mathematical 

statistics would be difficult to say the least! However, simulating data and fitting two competing 

models is a more tangible experience, shows the same results (the normal distribution has the lower 
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AIC regardless of whether it is the “correct” model), and is more memorable for students than the 

theoretical justification. 

Another benefit of the simulation labs was the ability to demystify the R output, especially for 

more complex models such as mixed effects models. Without a deep exploration of the documentation 

for the various mixed models and GLMMs in R, and the various packages used to implement them, 

it’s difficult to know what exactly is represented in the output. By simulating data with known 

variance components, students were better able to connect each part of the output back to the data 

generation process. Students also gained a better understanding of the functional components of a 

GLMM. Working through the simulation process explicitly demonstrated how the model believes the 

data has been generated. Not only that, but repeated investigation eventually allowed for 

generalization. For example, Figure 2 shows a prompt taken from Lab 4. After students had explored 

linear regression, Poisson regression, and logistic regression in detail, they were asked to write their 

own generalized set of assumptions for a generalized linear model. Since students had worked so 

closely with each of the three models in previous assignments, they were able to construct thoughtful 

sets of generalized assumptions for a new model. 

 

 
Figure 2. Discussion prompt from Lab 4 

  

Finally, completing simulation studies in small groups and reporting back encouraged students 

to accept natural variability in both simulated data and parameter estimates. Due to the inherent 

randomness of simulated data all student groups obtained slightly different results. In this particular 

semester, students shared their findings in online documents such as Google Slides or Google Docs, so 

they were able to see the differences in the online environment. In fact, Google Slides worked so well 

that the author would recommend using it in face-to-face classes as well. 

One of the major limitations to implementing advanced simulation-based labs are the 

expanded prerequisites. Neither introductory statistics nor introductory data science is enough on its 

own to prepare students for such a course. For institutions with multiple pathways, multiple 

instructors, or both, ensuring all students have sufficient background may be a challenge. To address 

this, simulation labs should be scaffolded with respect to both difficulty and level of independence 

expected of students. Relying on learning through simulation also means additional technical 

challenges: more code means more troubleshooting. In general, instructors should try to mimic the 

student’s environment as much as possible. This could mean maintaining a separate user profile on 

your computer for teaching or updating already installed R packages to have the same versions 

available as students. 
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GLMM theory can be intimidating, especially the structure of the model and the link function. 

Working through some examples of finding the canonical link of a distribution can help, but there is 

also a need to balance the mathematical prerequisites with the course material. One possible way to 

address this is to set aside 1-2 days early in the semester to discuss probability distributions. At 

Creighton, some introductory statistics courses cover the usual probability distributions, and others 

only cover the normal distribution. Spending extra time early in the semester can help get students that 

are new to probability theory up to speed, as well as provides a refresher for experienced students. 

In a time-restricted setting, students shouldn’t reinvent the wheel. The goal was to use 

simulation as a tool for increasing understanding, not as the final result. Providing students with 

sample code took the cognitive focus away from writing the code and shifts it to the results. As the 

semester progressed, students got less and less code as a starting point, but in the beginning almost no 

new lines of code were written during the lab times. Lessons learned from the labs should extend 

beyond the lab time. Students periodically reflected on their findings in weekly quizzes, and applied 

what they learned about model performance and interpreting results on their weekly homework 

assignments. 

With the rise of data science courses, and the increase in computing acumen developed in 

introductory statistics classes, statistics faculty can incorporate more meaningful computing 

experiences earlier in the curriculum. Doing so can increase student participation and engagement, 

further develop computing acumen, and foster statistical intuition. 

 

RESOURCES 

All labs and data sets are available at: https://github.com/aimeeschwab-

mccoy/IASE2021_Labs. Instructor solution guides are available on request. 
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